
Journal of Engineering Mathematics 46: 331–354, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

Filon’s construct for dislocations and related topics

R.J. KNOPS
Department of Mathematics, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, UK
(e-mail: R.J.Knops@hw.ac.uk)

Received 30 September 2002; accepted in revised form 5 May 2003

Abstract. A unified account is presented of the relationships in plane homogeneous isotropic linear elasticity
between dislocations, thermoelasticity, inclusions, and the variation of Poisson’s ratio. While basic principles are
emphasised, there is also indicated how solutions in one theory may be used to generate solutions in another. The
connexion between dislocations and the variation of Poisson’s ratio, and between dislocations and thermoelasticity
are due respectively to Filon and Mushkelishvili.
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1. Introduction

Filon [1], in his paper on plane isotropic linear elasticity to the British Association for the
Advancement of Science held at Edinburgh in 1921, described how the difference in two
solutions to the same traction boundary value problem with the same shear modulus but
different Poisson ratios is related to the solution to the problem of an edge dislocation with
zero boundary traction. He applied the result principally to photoelasticity (see Coker and
Filon [3, p. 518]). Muskhelishvili [2, p. 166] later analysed a second connexion, again in
plane elasticity, between a dislocation solution and that for a corresponding problem in plane
thermoelasticity.

A commemorative volume dedicated to Filon furnishes the opportunity for a unified evalu-
ation of these and related contributions. For convenience, only the homogeneous theory is
considered. A complex-variable formulation, focussed on the variation of Poisson’s ratio,
facilitates a systematic investigation and clarifies the extension to other problems. The main
intention is not to present new results, although some are included. Instead, the account seeks
to extract and recall basic principles useful not only for theoretical development but also for
the generation of solutions to specific boundary-value problems in the plane theories of dislo-
cations, thermoelasticity and elastic inclusions. In this respect, the relationships due to Filon
and Muskhelishvili, apparently frequently overlooked, help to avoid unnecessary duplication.

Several topics discussed here are alternatively treated in the book by Timoshenko and
Goodier [4].

Section 2 assembles well-known elements of plane strain elasticity needed subsequently.
In particular, the necessary and sufficient conditions first established by Michell [5] for the
stress to be independent of the elastic moduli are recalled. Section 3 employs complex vari-
ables to express the difference in the displacement for two different Poisson ratios but for
the same boundary conditions and shear modulus from which the relationships of Filon and
Muskhelishvili immediately follow. Simple examples illustrate the interrelationships and the
procedure for generating exact solutions in the respective theories. Section 4 examines the
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inclusion problem of a homogeneous matrix containing one or more bonded inclusions of
different Poisson ratios. The solution is derived from that to the problem in which Poisson’s
ratio alters its value in those parts of an initially homogeneous material subsequently occupied
by the inclusions. The relationships, both for a heated inclusion in a cold homogeneous matrix
and for a distribution of Somigliana dislocations, are easily derived. The second relationship
also links with the approach to inclusions adopted by Eshelby [6] and others. A surprising
feature is that the solution reduces solely to a dependence upon that for the homogeneous
problem with the inclusions absent. In conclusion, Section 5 consists of some brief remarks
that include extension of the procedure to allow a variation in the shear modulus as well as in
Poisson’s ratio.

A suitably smooth solution is always assumed to exist for the problems treated. The con-
ventions of summing over repeated suffixes, and of a subscript comma to denote partial
differentiation are adopted throughout. Greek lower case letters range over the values 1,2.

2. Elements of basic theory

2.1. GENERAL

Presented without proof in this section are selected well-known results from the complex vari-
able theory of isotropic homogeneous plane-strain elasticity that are required subsequently.
Standard references include the books by Green and Zerna [7], Milne-Thomson [8], Muskhe-
lishvili [2], Sokolnikoff [9], and Timoshenko and Goodier [4].

Consider an infinitely long prismatic cylinder whose connected cross-section may be boun-
ded or unbounded , and either singly or multiply connected. Select a cross-section �, and let
x1, x2 be the coordinates of a point in � with respect to a two-dimensional Cartesian system
whose origin is located in the plane of �. Introduce the complex variable z = x1 + ix2 together
with its complex conjugate z = x1 − ix2, and define complex differentiation by:

∂
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= 1

2

(
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− i

∂

∂x2
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,
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)
. (2.1.1)

The cylinder is occupied by a homogeneous isotropic linear elastic material of Lamé
constants λ and µ related to the Poisson ratio ν for 2ν �= 1 by

λ = 2µν

1 − 2ν
. (2.1.2)

Equilibrium is maintained under zero body force and prescribed boundary conditions that
produce a plane-strain deformation in the cross-section �. In those parts of � where the
Cartesian components (u1, u2) of the displacement are differentiable, the strain and rotation
are defined respectively by the relations:

eαβ = 1

2

(
uα,β + uβ,α

)
, α, β = 1, 2, (2.1.3)

ω = 1

2

(
u2,1 − u1,2

)
. (2.1.4)

The strain, where defined, is supposed single valued, but the displacement is assumed
single valued only when the region � is singly connected. Conditions under which the dis-
placement is single valued in multiply connected regions are discussed later.

Let D = u1 + iu2. Then
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where appeal has been made to the relation

∂D

∂z
= ∂D

∂z
. (2.1.10)

The stress-tensor components σαβ with respect to the chosen Cartesian coordinate axes are
assumed differentiable and single valued irrespective of whether the region � is simply or
multiply connected, and are expressed in terms of the strain components by the constitutive
relations

σαβ = λeγγ δαβ + 2µeαβ, (2.1.11)

where δαβ is the Kronecker delta. Substitution of (2.1.11) in the stress equilibrium equations

σαβ,β = 0 (2.1.12)

enables the introduction of complex analytic potential functions ϕ (z) and ψ (z) that are
holomorphic (i.e., analytic and single valued) in singly connected regions �. In terms of the
complex potentials, the displacement and stress components are expressed by

2µD = (3 − 4ν) ϕ (z) − zϕ′ (z) − ψ (z), (2.1.13)

σαα = 2
(
ϕ′ (z) + ϕ′ (z),

)
, (2.1.14)

σ22 − σ11 + 2iσ12 = 2
[
zϕ′′ (z) + ψ ′ (z)

]
, (2.1.15)

where a superposed prime indicates differentiation with respect to the argument of the relevant
function. In addition the notation

F (z) = F (z) , (2.1.16)

is adopted, so that in particular
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ϕ′ (z) = ∂ϕ (z)

∂z
. (2.1.17)

From (2.1.7) and (2.1.13) follows the identity

(λ + 2µ) eαα + 2iµω = 2
(λ + 2µ)

(λ + µ)
ϕ′ (z) , (2.1.18)

which implies that (λ + 2µ) eαα and 2iµω are the real and imaginary parts of an analytic com-
plex function and accordingly eαα and ω vanish together. It is supposed that the displacement
and traction are continuous onto any smooth non-intersecting curve C in the region � and also
onto the boundary ∂�. Further, the solution is assumed regular in the sense of Muskhelishvili
[2, p. 155], namely, that the complex potentials ϕ (z) and ψ (z) and the derivative ϕ′ (z) are
assumed to be continued continuously at all points of the external (and internal) boundary ∂�.
The traction with Cartesian components (F1, F2) across the curve C at any point z(s), where
s is the arc-length along C, possesses the equivalent representations:

F1 + iF2 = −i [(λ + 2µ) eαα + 2iµω]
dz

ds
+ 2iµ

dD

ds
(2.1.19)

= −i
d

ds
[4 (1 − ν) ϕ (z) − 2µD] (2.1.20)

= −i
d

ds

[
ϕ (z) + zϕ′ (z) + ψ (z)

]
. (2.1.21)

When C is a simple closed curve, it follows from (2.1.21) that the total force acting across C

is given by∮
C

(F1 + iF2) ds = −i
[
ϕ (z) + zϕ′ (z) + ψ (z)

]
C
, (2.1.23)

where [·]C denotes the increase in the enclosed quantity as the curve C is described once in the
positive (anti-clockwise) direction. For simplicity, attention is restricted to either displacement
or traction boundary conditions on ∂�. Consequently, either

D = f, z ∈ ∂�, (2.1.23)

or

F1 + iF2 = g, z ∈ ∂�, (2.1.24)

are assumed, where f and g are given complex functions on ∂�. When � is unbounded, the
asymptotic behaviour as |z| → ∞ of either the displacement or stress and rotation must be
specified. In terms of the elastic moduli, necessary and sufficient conditions for the uniqueness
of the stress and displacement in the displacement boundary-value problem are that

−∞ ≤ ν ≤ 1

2
, 1 < ν ≤ ∞, µ �= 0, (2.1.25)

while in the traction boundary problem, the stress is unique if and only if ν �= 1 while the
displacement is unique if and only if ν �= 1, µ �= 0. Both sets of conditions may be relaxed
for special geometries. For example, when � is a circle, a necessary and sufficient condition
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in the displacement boundary-value problem is ν �= 1, 3/4, µ �= 0. Details of these and other
results may be found in [10, Chapter 5, p. 61].

2.2. SINGLY CONNECTED REGIONS

Selected properties of the solution are recalled when the region � is singly connected. Mul-
tiply connected regions are considered in the next subsection. First, observe that since the
displacement is single valued in a singly connected region (2.1.13) leads to[

(3 − 4ν)ϕ(z) − zϕ′(z) − ψ(z)
]

C
= 0, (2.2.1)

for any simple closed curve C in the region �. The total traction on C is zero for equilibrium
and (2.1.22) gives[

ϕ (z) + zϕ′ (z) + ψ (z)
]

C
= 0. (2.2.2)

Expressions (2.2.1) and (2.2.2) imply that [ϕ(z)]C = 0, unless ν = 1, and consequently ϕ (z)

is holomorphic in �. But differentiation inside the square bracket yields
[
ϕ′(z)

]
C

= 0, which
together with (2.2.2) shows that

[
ψ(z)

]
C

= 0 and ψ(z) is likewise holomorphic in �.
The complex potentials are determined from the boundary conditions (2.1.23) or (2.1.24)

either by means of power-series expansions or by the theory of Cauchy integrals. Details are
presented in standard texts and demonstrate that, in principle at least, any boundary-value
problem may be solved explicitly. A particular property of these solutions, of subsequent
significance, is that for the traction boundary-value problem the complex potentials, deter-
mined from (2.1.21) and (2.1.24), are independent of the elastic moduli. Moreover, the stress
components, being given by (2.1.14) and (2.1.15) similarly are insensitive to variations in
the Poisson ratio and shear modulus (cp., [2, p. 160]). The displacement, given by (2.1.13),
obviously does not exhibit the same property.

2.3. MULTIPLY CONNECTED REGIONS. DISLOCATIONS

Consider a multiply connected region � and allow the displacement to be multi-valued while
still requiring the stress components to remain single valued. Let � be bounded internally by
n smooth non-intersecting closed contours ∂�k, k = 1, . . . , n, and externally by the boundary
∂�0 (when the region is bounded). According to Milne-Thomson [8], the jump discontinuity
in the displacement around any simple closed curve taken in the positive (anti-clockwise)
direction may be calculated as follows.

By virtue of the single valuedness of the stress components, the relations (2.1.14) and
(2.1.15) imply the expressions[

ϕ′(z)
]
C

+ [ϕ′(z)]C = 0, (2.3.1)[
zϕ′′(z)

]
C

+ [
ψ ′(z)

]
C

= 0, (2.3.2)

around any smooth closed contour C in �. Differentiation and integration commute with the
operation of jump discontinuity, so that (2.3.1) yields

[
ϕ′′(z)

]
C

= 0, and consequently

[ϕ(z)]C = izA + B, (2.3.3)

in which A and B are a real and complex constant, respectively. Similarly, (2.3.2) implies



336 R.J. Knops[
ψ(z)

]
C

= E, (2.3.4)

for complex constant E. Insertion of (2.3.3) and (2.3.4) into (2.1.13) gives the required ex-
pression for the jump discontinuity of the displacement around the closed curve C:

2µ [D]C = 4(1 − ν)izA + (3 − 4ν)B − E. (2.3.5)

Such discontinuities are known as (Volterra) dislocations and consist of an edge dislocation,
corresponding to the rigid body translation [(1 − 4ν)B − E], and what is termed a wedge
disclination, corresponding to the rigid-body rotation through the (small) angle 4(1 − ν)A.
Dislocations in the present context are discussed in further detail in, for example, the books
[8], [2, p. 162], [11, p. 221], and [12]. Filon [1] (see also Coker and Filon[3, p. 518]) describes
the relation between edge dislocations and the difference of two single-valued displacements
in problems having the same boundary traction and shear modulus but different Poisson ratios.
Section 3 rederives the conclusion as part of an integrated account.

This sub-section, meanwhile, is concluded with an examination of conditions for boundary-
value problems in the multiply-connected region � to possess a single-valued displacement
and stress components that are independent of the elastic moduli. For a simply connected
region, it has been noted in Section 2.2 that such independence can occur only in the traction
boundary problem. In a multiply connected region, the same argument shows that the stress in
the traction boundary-value problem is likewise independent of the elastic moduli but allows
the displacement to be multi-valued. Denote the resultant traction across each internal bound-
ary ∂�k described clockwise by Xk + iYk and let Ak,Bk, and Ek be the respective constants
appearing in (2.3.3) and (2.3.4). Relation (2.1.22) leads to:

Xk + iYk = i(Bk + iEk). (2.3.6)

Now restrict the displacement to be single valued. From (2.3.5) for each k it may be
concluded that:

Ak = 0, (3 − 4ν)Bk − Ek = 0, (2.3.7)

which together with (2.3.6) implies that:

Bk = (Yk − iXk)

4(1 − ν)
, (2.3.8)

Ek = (3 − 4ν)(Yk + iXk)

4(1 − ν)
. (2.3.9)

Let (ν(1), µ(1)) and (ν(2), µ(2)) be different moduli and let ϕ and ψ be complex poten-
tials for the traction boundary-value problem with moduli (ν(1), µ(1)) and consequently for
the same traction boundary-value problem with moduli (ν(2), µ(2)). For each contour ∂�k,
the constants Ak,Bk,Ek likewise remain unaltered and satisfy the relations (2.3.7)–(2.3.9)
for both sets of moduli. But this is possible only when Xk = Yk = 0,for k = 1, . . . , n.

Consequently, in the traction boundary-value problem for a multiply connected region, the
displacement can be single valued and the stress components independent of the elastic moduli
if and only if the resultant traction is zero over each internal boundary ∂�k (and by overall
equilibrium also over ∂�o). The conclusion is invalidated when multi-valued displacements
are admitted.
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The result was first derived by Michell [5] (see also [2, p. 161]). Corresponding investi-
gations in three dimensions by Carlson [13] (see also Dundurs [14] and Sternberg and Muki
[15]) establish, for example, that the stress is independent of Poisson’s ratio if and only if the
dilatation vanishes for at least one value of Poisson’s ratio. Other results are obtained with
respect to the shear modulus, while estimates for the continuous dependence of the solution
on the elastic moduli have been constructed by Bramble and Payne [16]; see also Knops and
Payne [17]. These studies are related to the notion in nonlinear elasticity of a universal solution
valid irrespective of material properties.

2.4. THERMOELASTICITY

Let the cylinder be occupied by an isotropic homogeneous linear thermoelastic material sub-
ject to a uniform steady temperature distribution and let the cross section � experience a
plane strain deformation. In the absence of heat sources, the temperature T (x1, x2), supposed
independent of the cylinder’s axial variable and single valued, is an harmonic function. The
relevant constitutive relations are:

σαβ = λeγγ δαβ + 2µeαβ − (3λ + 2µ)κT δαβ, (2.4.1)

where κ is the constant coefficient of linear thermal expansion. Equilibrium is maintained
under zero body force, displacement and traction boundary conditions (2.1.23) or (2.1.24),
and thermal boundary conditions consisting of either

T (x1, x2) = T1, (x1, x2) ∈ ∂�, (2.4.2)

or

nαT ,α +h(T − T0) = T2, (x1, x2) ∈ ∂�, (2.4.3)

in which (n1, n2) are the cartesian components of the unit outward normal on ∂�, T1 and
T2 are specified functions of x1 and x2 on ∂�, T0 is the ambient temperature of material
surrounding �, and h is the known coefficient of heat transfer on ∂� between � and its
exterior.

It is proved in the standard texts (see also Lurie [18]) that the thermal displacement is given
by

2µD = (3 − 4ν)ϕ(z) − zϕ′(z) − ψ(z) + µκ�
(3λ + 2µ)

(λ + µ)
, (2.4.4)

where

� =
∫

(T + iS) dz, (2.4.5)

and S(x1, x2) is the imaginary part of the complex function whose real part is T (x1, x2).
(The function S may be multi-valued even when T is single valued.) The complex potentials
ϕ(z) and ψ(z) retain the previously described properties and, in fact, the stress components
continue to be given by (2.1.14.) and (2.1.15). It is immediate in the traction boundary-value
problem that the stress is independent of the temperature and elastic moduli (cp., [2, pp 165–
167], [9, p. 366]).
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The assemblage of elements from the basic theory is now complete. The next section
discusses how plane theories of edge dislocations, thermoelasticity, and variation of Pois-
son’s ratio may be interrelated. Section 4 considers the problem of a matrix containing em-
bedded bonded inclusions of different Poisson ratios and also discusses the relation with
thermoelasticity.

3. Interrelationships

3.1. INTRODUCTION

Solutions in isothermal plane elasticity are considered for which boundary conditions and the
shear modulus remain unaltered but Poisson’s ratio varies from one uniform value to another.
First, it is explained how the difference between two such solutions may be employed to solve
new problems, and then the main task is addressed of relating the difference solution to ones
in the plane theory of edge dislocations and thermoelasticity. This enables solutions in one
theory to be derived from those in another or from an isothermal problem for which Poisson’s
ratio has been selected to simplify the calculations. The respective procedures are illustrated
by examples that mainly concern singularities.

3.2. NOTATION

Let quantities corresponding to isothermal solutions with Poisson ratios ν(α), α = 1, 2, be
denoted by superscripts so that, for example, the respective complex potentials are ϕα)(z) and
ψ(α)(z). Define the differences between the complex potentials to be ϕ = ϕ(1) − ϕ(2), ψ =
ψ(1) − ψ(2); and that between the displacement and stress components to be:

D = D(1) − D(2), (3.2.1)

σαβ = σ
(1)
αβ − σ

(2)
αβ . (3.2.2)

From (2.1.13)–(2.1.15) it follows that

2µD = (3 − 4ν(1))ϕ(z) − zϕ′(z) − ψ(z) − 4(ν(1) − ν(2))ϕ(2)(z), (3.2.3)

σαα = 2[ϕ′(z) + ϕ′(z)], (3.2.4)

σ22 − σ11 + 2iσ12 = 2[zϕ′′(z) + ψ ′(z)], (3.2.5)

where µ is the unaltered shear modulus. The difference boundary conditions reduce to either

D = 0, z ∈ ∂�, (3.2.6)

or

F1 + iF2 = 0, z ∈ ∂�, (3.2.7)

depending upon whether the boundary displacement or boundary traction is specified initially.
The difference complex potentials ϕ and ψ inherit properties enjoyed by ϕ(α) and ψ(α).

In particular, ϕ and ψ vanish identically in the traction boundary problem under conditions
stated in Sections 2.2 and 2.3. Nevertheless, the difference displacement D does not vanish
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in similar circumstances and indeed may contain dislocations when � is multiply connected.
Before embarking on further discussion of these and related topics, we investigate briefly how
the formulation (3.2.3)–(3.2.7) may be used to solve isothermal problems.

3.3. ISOTHERMAL PROBLEMS

In order to employ the difference displacement and stress to derive a solution to an isothermal
boundary-value problem for a general Poisson ratio, it is necessary to first select a value of the
Poisson ratio that simplifies the calculation and enables the complex potentials ϕ(2) and ω(2)

to be determined easily. Certain simplifying values are discussed in [10, Chapter 3, p. 23].
The selected Poisson ratio need not yield a unique solution; for example, the values ν(2) = 1
or 3

4 can be included. The customary modification, however, is required for an incompressible
material when ν(2) = 1

2 . For such problems, it worth recalling the connexion established
by Hill [19] that relates solutions to the displacement and traction boundary problems. In
singly connected regions, the stress is independent of the elastic moduli for a given traction
boundary problem and consequently by Hill’s analogy may be found from the solution to the
corresponding displacement boundary-value problem in the incompressible case. Further, in
this category of problems, the difference complex potentials are identically zero or constant,
and the difference displacement, which may be regarded as occurring in a material of Poisson
ratio ν(1), is given by

2µD = −4(ν(1) − ν(2))ϕ(2)(z), z ∈ �. (3.3.1)

On the other hand, for the displacement boundary problem, insertion into the boundary
condition (3.2.6) of the known complex potential ϕ(2)(z) from the simplified problem with
Poisson ratio ν(2) leads to:

(3 − 4ν(1))ϕ(z) − zϕ′(z) − ψ(z) = 4(ν(1) − ν(2))ϕ(2)(z), z ∈ ∂�, (3.3.2)

from which the difference complex potentials ϕ and ψ may be determined by standard meth-
ods provided the general value ν(1) of Poisson’s ratio lies in the uniqueness range. The final
complex potentials ϕ(1) and ψ(1) for Poisson ratio ν(1) are obtained from the relations ϕ(1) =
ϕ(2) + ϕ, ψ(1) = ψ(2) + ψ .

The procedure, however, offers little obvious advantage over standard methods of solution
in plane elasticity. Nevertheless, it can be effective in three-dimensions where it has success-
fully solved new problems (e.g., Knops [20]) and represents a generalisation of Westergaard’s
twin-gradient method [21].

3.4. DISLOCATIONS

For a simply connected region � the complex potentials ϕ(α) and ψ(α) are holomorphic and
consequently so also are the difference complex potentials ϕ and ψ . This conclusion implies
that the difference displacement D cannot contain a dislocation and that an interpretation of
the difference displacement in terms of dislocations can be sought only for regions � that are
multiply connected. Accordingly, let � be bounded internally by n smooth non-intersecting
closed contours ∂�k, k = 1, 2, . . . , n, over each of which the resultant traction Xk + iYk is
non-zero, and further suppose that the displacement D(α) and stress σ

(α)
αβ are single valued in

�. Note that Michell’s result (see Section 2.3) implies that the stress necessarily depends upon
the elastic moduli. By virtue of the single valuedness of the displacement D(2), the relations
(2.3.3) and (2.3.8) lead to the expression
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[
ϕ(2)(z)

]
∂�k

= i(Xk + iYk)

4(1 − ν(2))
, (3.4.1)

where ∂�k is described clockwise.
Let

2µD∗ = −4(ν(1) − ν(2))ϕ(2)(z), z ∈ �, (3.4.2)

and define D† = D − D∗. Now, D is single valued in � and consequently for each k there
holds:

µ
[
D†]

∂�k
= −µ

[
D∗]

∂�k
(3.4.3)

= 2(ν(1) − ν(2))[ϕ(2)(z)]∂�k
(3.4.4)

= i(ν(1) − ν(2))(Xk + iYk)

2(1 − ν(2))
, (3.4.5)

after an appeal to (3.4.2) and (3.4.1). It therefore follows that the difference stress distribution
given by (3.2.4) and (3.2.5) are associated with a displacement D† that contains an edge
dislocation of amount (3.4.5).

The result was first obtained by Filon [1] ( see also Coker and Filon [3, p. 518]) and was
used by him to generate solutions in a multiply connected region to the traction boundary
problem with a single valued displacement from that containing a specified edge dislocation
under zero boundary tractions. The problem is first solved for a simplifying Poisson ratio ν(1)

subject to non-zero tractions Xk + iYk on each boundary ∂�k. Photoelastic experiment is next
used to measure the displacement D† and stress components σαβ in the same body but with
each boundary ∂�k and ∂�o traction-free, and with dislocations of amount (3.4.5) introduced
between each respective contour ∂�k and ∂�o. The stress components for any other value of
Poisson’s ratio ν(2) in the loaded problem are finally obtained from σ

(2)
αβ = σ

(1)
αβ − σαβ , while

the associated displacement is given by D(2) = D(1) − D† − D∗. Apart from photoelasticity,
the solutions to several other types of dislocation problems are discussed, for example, by
Milne-Thomson [8] and Nabarro [12].

The procedure may be reversed to generate solutions to problems containing edge dis-
locations and illustrative examples are presented in Section 3.7 after the relationship with
thermoelasticity is established in the next subsection. Note, however, that the procedure can
deal only with edge dislocations and other types of dislocations are excluded.

3.5. THERMOELASTICITY

A second interpretation of the difference displacement and stress distribution is realised on
comparing expressions (3.2.3) and (2.4.4) for the displacement produced by steady heat con-
duction in the plane strain deformation of an elastic material with Poisson ration ν(1) and shear
modulus µ. The expressions become identical on setting

4(ν(1) − ν(2))ϕ(2)(z) = −µκ�(3λ(1) + 2µ)

(λ(1) + µ)
, (3.5.1)

and it may be concluded that the single valued temperature T (x1, x2) is related to the isother-
mal complex potential ϕ(2)(z) by
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T + iS = −4(ν(1) − ν(2))(λ(1) + µ)ϕ(2)
′
(z)

µκ(3λ(1) + 2µ)
(3.5.2)

= −2(ν(1) − ν(2))(λ(1) + µ)(λ(2) + µ)[(λ(2) + 2µ)e(2)
γ γ + 2iµω(2)]

µκ(3λ(1) + 2µ)(λ(2) + 2µ)
, (3.5.3)

by virtue of (2.1.18)
A relationship therefore exists between a plane thermoelastic problem with steady heat

conduction subject to zero mechanical boundary conditions and the difference of the solu-
tions to two isothermal plane elastic problems for the same boundary conditions and shear
modulus but different Poisson ratios. When the solution for arbitrary Poisson ratio is known
for the isothermal problem, the temperature is given by (3.5.2) for thermoelastic material of
elastic moduli ν(1), µ and coefficient of thermal expansion κ . The mechanical boundary con-
ditions in the thermal problem consist of either zero displacement or zero traction depending
upon whether the boundary displacement or boundary traction are specified in the isothermal
problem. An analogous procedure in three dimensions has been developed by Knops [22].

The thermoelastic complex potentials are ϕ and ψ and lead to expressions (3.2.3)–(3.2.5)
for the thermoelastic displacement and stress. The thermal boundary conditions generated by
this procedure are obtained by inserting the expression for T given by (3.5.2) into either the
boundary conditions (2.4.2) or (2.4.3) and deriving either T1, h or T2 in semi-inverse fash-
ion. In general, the thermal boundary conditions cannot be prescribed a priori. Conversely,
a known plane thermoelastic solution may be used to generate an isothermal one by first
selecting an appropriate Poisson ratio ν(2) and calculating the corresponding complex potential
ϕ(2)(z) from (3.5.1) or (3.5.2). The second complex potential ψ(2)(z) is determined from the
prescribed mechanical boundary conditions and the general isothermal solution obtained by
adding the thermoelastic solution to that calculated from the complex potentials ϕ(2)(z) and
ψ(2)(z). When the isothermal dilatation or rotation vanish for a particular value of Poisson’s
ratio ν(2) then relation (3.5.3) implies that the temperature must also vanish in the correspond-
ing thermal problem, where by construction the mechanical boundary conditions are zero.
Accordingly, for a Poisson ratio ν(1) that lies in the range for the solution to be unique it
follows that the stress and strain in the thermal problem are identically zero. This in turn
implies that the stress and strain in the isothermal problem are independent of Poisson’s ratio.
The conclusion has been established in three dimensions by Carlson [13] by different means.

More generally, the isothermal traction boundary-value problem in a simply connected
region produces a stress distribution independent of the elastic moduli (Section 2.2). Conse-
quently, the stress must vanish identically in the corresponding thermoelastic problem having
a steady temperature T (x1, x2) and zero-traction boundary conditions. Now assume that for
any given T (x1, x2) suitable isothermal traction boundary conditions can be found for Poisson
ratio ν(2) such that the corresponding complex potential ϕ(2)(z) satisfies (3.5.1). The thermal
displacement is given by (3.2.3) with the complex potentials ϕ and ψ identically zero. In sum-
mary, the stress vanishes identically in any plane steady heat conduction problem subject to
zero traction boundary conditions and in a simply connected region. Similar remarks apply to
multiply connected regions under conditions outlined in Section 2.3. The conclusion appears
first to have been noted by Muskhelishvili [2, p. 168].
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3.6. RELATIONSHIP BETWEEN DISLOCATIONS AND THERMOLASTICITY

Admission of dislocations into the discussion necessarily requires the region � to be multi-
ply connected. As before, let there be n internal boundaries ∂�k, k = 1, . . . , n, satisfying
the previously stated conditions and suppose that � is either bounded or unbounded. From
Sections 3.4 and 3.5 it follows that

2µD∗ = −4(ν(1) − ν(2))ϕ(2)(z) = µκ�(3λ(1) + 2µ)

(λ(1) + µ)
, (3.6.1)

which immediately establishes the connexion between dislocations, steady-state plane ther-
moelastic problems under zero boundary conditions, and the difference between isothermal
plane elastic solutions for different Poisson ratios but the same boundary conditions and shear
modulus. Observe that in the multiply connected region, although T is assumed single valued,
the function � defined by (3.5.1) may be multi-valued providing conditions for dislocations to
occur. The explicit relationship (3.6.1) between dislocations and thermoelasticity in the plane
theory is due to Muskhelishvili [2, p. 165–170] who adopted, however, a slightly different
derivation. (See also [23].) Solutions, as already explained, can be converted from one set of
problems into either of the other two. The procedure is illustrated in the next section by simple
examples.

3.7. EXAMPLES

The following examples, from the many available in the literature, are selected to illustrate the
application of the procedure to problems in which certain singularities occur.

3.7.1. Point force in the infinite plane
Consider a point force X1 + iX2 externally applied at the origin in the infinite plane and
suppose that the stress uniformly vanishes at infinity. The well-known complex potentials for
a general Poisson ratio ν and shear modulus µ are:

ϕ(z) = −(X1 + iX2) log z

8π(1 − ν)
, ψ(z) = (3 − 4ν)(X1 − iX2) log z

8π(1 − ν)
. (3.7.1)

We first discuss the dislocation problem, and choose arbitrary values ν(1) and ν(2) of Poisson’s
ratio. For any smooth curve C enclosing the origin and described anti-clockwise, the edge
dislocation in the displacement D† from (3.4.5) is given by:[

D†]
C

= b1 + ib2, (3.7.2)

where

b1 = −(ν(1) − ν(2))X2

2µ(1 − ν(2))
, (3.7.3)

b2 = (ν(1) − ν(2))X1

2µ(1 − ν(2))
, (3.7.4)

while by equilibrium across C there holds:

X1 + iX2 = −
∮

C

(F1 + iF2)ds. (3.7.5)
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The difference complex potentials (in a notation not to be confused with that in (3.7.1)) are
given by

ϕ(z) = iµ(b1 + ib2) log z

4π(1 − ν(1))
, (3.7.6)

ψ(z) = − iµ(b1 − ib2) log z

4π(1 − ν(1))
, (3.7.7)

and consequently the displacement D† from (3.2.3) and (3.4.2) becomes

D† = (ib1 − b2)[(3 − 4ν(1)) log z − log z] + (ib1 + b2)z(z)
−1

8π(1 − ν(1))
, (3.7.8)

which is the expression otherwise obtained, for example, by Nabarro [12, p. 55]. With respect
to the thermoelastic problem, the steady temperature corresponding to the complex potential
(3.5.1) from (3.5.2) is given by

T = −2(ν(1) − ν(2))(λ(1) + µ)(ϕ(2)′(z) + ϕ(2)′(z̄))
µκ(3λ(1) + 2µ)

= m1xαXα

4πκr2
(3.7.9)

m1 = ν(1) − ν(2)

(1 + ν(1))(1 − ν(2))
, r2 = zz. (3.7.10)

In terms of the edge dislocation (3.7.2), the temperature may equivalently be expressed as

T = x1b2 − x2b1

2πκ(1 + ν(1))
. (3.7.11)

The temperature distribution (3.7.9) represents a pair of heat dipoles at the origin in the co-
ordinate directions and of strengths m1X1/2κ and m1X2/2κ , respectively. Expressions for
the corresponding displacement and stress, obtained from (3.2.3)–(3.2.5) for the complex
potentials (3.7.6) and (3.7.7), are omitted.

3.7.2. The half-plane
Let � be the half-plane x2 ≤ 0 subject to boundary conditions along the boundary x2 = 0. It is
known ([2, p. 464]) that when the stress and rotation vanish uniformly at infinity, the solution
for general elastic moduli regardless of boundary conditions is completely represented in
terms of the single complex potential ϕ(z), holomorphic in �, according to the expressions:

2µD = (3 − 4ν)ϕ(z) + ϕ(z) − (z − z)ϕ′(z) + constant, z ∈ �, (3.7.12)

σαα = 2[ϕ′(z) + ϕ′(z)], z ∈ � (3.7.13)

σ22 − σ11 + 2iσ12 = 2[(z − z)ϕ′′(z) − ϕ′(z) − ϕ′(z)], z ∈ �. (3.7.14)

In particular, consider the traction boundary-value problem in which the prescribed pointwise
boundary load F1(x1) + iF2(x1) on x2 = 0 satisfies certain continuity requirements and
possesses a bounded total resultant X1 + iX2. For this problem the complex potential is given
by:
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ϕ(2)(z) = − 1

2π

∫ ∞

−∞
(F1(t) + iF2(t)) log (t − z)dt, z ∈ �, (3.7.15)

where t is a real variable of integration. (A comment is included below on the appropriate-
ness of this class of isothermal problems for solutions to problems containing dislocations.)
According to (3.7.9), the present procedure leads to the steady-state temperature:

T (x1, x2) = −m2

π

∫ ∞

−∞

[
F1(t) + iF2(t)

t − z
+ F1(t) − iF2(t)

t − z

]
dt, (3.7.16)

in which

m2 = (ν(1) − ν(2))(λ(1) + µ)

µκ(3λ(1) + 2µ)
. (3.7.17)

Thermal boundary conditions on x2 = 0 are obtained from (3.7.16) on letting x2 → 0,
and may lead to specification of either the temperature or radiation condition. Independence
from the elastic moduli of the complex potential (3.7.15) implies that the difference complex
potential is identically zero and from (3.7.13) and (3.7.14) that the difference stress distri-
bution likewise vanishes identically. Consequently, there are no thermal stresses σαβ in the
corresponding plane thermoelastic problem subject to a temperature of the form (3.7.16). On
the other hand, by (3.7.12), the corresponding difference displacement is expressed by:

2µD = −2m2µκ(3λ(1) + 2µ)

π(λ(1) + µ)

∫ ∞

−∞
[F1(t) + iF2(t)] log (t − z)dt. (3.7.18)

Consider two special loadings ([2, p. 386, p. 395, resp.]). The first is a concentrated point load
X1 + iX2 at the origin for which

ϕ(2)(z) = − 1

2π
(X1 + iX2) log z. (3.7.19)

The corresponding temperature:

T (x1, x2) = 2m2

π
[Xα

∂

∂xα

log r], r2 = zz, (3.7.20)

represents a heat dipole at the origin on the boundary of the half-plane, the entire boundary
remaining traction-free. The second special load is given by

F1(x1) = 0, −∞ < x1 < ∞, (3.7.21)

F2(x1) = −P, −a ≤ x1 ≤ a, (3.7.22)

= 0, −∞ < x1 < −a, a < x1 < ∞, (3.7.23)

where P is constant, and consists of a uniform pressure P applied over the interval [−a, a].
The complex potential is

ϕ(2)(z) = P

2iπ

[
z log

(z − a)

(z + a)
− a log (z2 − a2)

]
, (3.7.24)

while the corresponding temperature is
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T (x1, x2) = 2m2P

π
(θ1 − θ2), (3.7.25)

where z − a = r1 exp (−iθ1) and z + a = r2 exp (−iθ2). On the boundary, the temperature is
given by

T (x1, 0) = 2m2P, −a ≤ x1 ≤ a, (3.7.26)

= 0, −∞ < x1 < −a, a < x1 < ∞. (3.7.27)

The plane thermoelastic problem consists of an interval [−a, a] of the boundary heated to
a uniform temperature with the remainder of the boundary held at zero temperature while
the entire boundary is traction free. For the previously stated reasons, the thermal stress
components σαβ vanish.

3.7.3. Half-plane with boundary heat source
The appropriate isothermal problem, apparently first discussed by Filon [24] (see also Love
[11, p. 214]), consists of the half-plane x2 ≤ 0 loaded on x2 = 0 by a constant tangential
force F1 = Q applied to the semi-infinite interval −∞ < x1 ≤ 0, with zero traction on the
remaining boundary. The complex potential is

ϕ(2)(z) = Q

2π
(z log z − z), (3.7.28)

which produces the temperature distribution

T (x1, x2) = −2m2Q

π
log r, r2 = zz, (3.7.29)

where m2 is given by (3.7.17). Consequently, the plane thermoelastic problem consists of
a point heat source located at the origin in an otherwise cold (zero temperature) boundary
which is everywhere traction-free. The thermal stress components vanish, while the thermal
displacement is

2µD = −2Qµκm2(3λ(1) + 2µ)

π(λ(1) + µ)
(z log z − z). (3.7.30)

3.8. FURTHER NOTE ON EDGE DISLOCATIONS AND WEDGE DISCLINATIONS

For the examples in the half-plane considered in the last subsection, it is difficult to envisage
circumstances in which the procedure might lead to problems with dislocations. The half-
plane is not multiply connected, and the complex potential ϕ(z) accordingly is holomorphic.
It is not obvious what displacement or traction boundary-value problem with uniform tem-
perature and single valued displacement, which upon taking differences for different Poisson
ratios, might lead to a solution with dislocations, and in particular, for a boundary distribution
of edge dislocations discussed, for example, by Maiti [25]. On the other hand, when the site
of the edge dislocation is at an interior point either in the half-plane or a general region �

the complex potential (3.5.1), augmented by suitably chosen additional holomorphic complex
potentials, does generate the solution to the problem of an edge dislocation.

As regards a wedge disclination, it follows from Section 2.3 that the constants Ak must
always be present and consequently the complex potential ϕ(z) must contain a part of the



346 R.J. Knops

form (3.7.28). It is unlikely that appropriate complex potentials can be produced from the dif-
ference of two solutions to a problem for which Ak is absence from the corresponding complex
potential and so the present procedure probably is ineffective. This remark may be illustrated
by reference to the discussion of multi-valued displacements in a circular ring of inner and
outer radii a and b(< a) under no external loads. A solution presented by Muskhelishvili [2,
p. 236] may be used for the inverse determination of the solution to a problem in the circular
ring under prescribed boundary tractions but with multi-valued displacements. Accordingly,
select the difference complex potentials to be given by

ϕ(z) = Az log z + Az(B − 1), (3.8.1)

ψ(z) = 2ACz−1, (3.8.2)

where

A = εµ

4π(1 − ν(1))
, (3.8.3)

B = a2(1 − 2 log a) − b2(1 − 2 log b)

2(a2 − b2)
, (3.8.4)

C = a2b2 log a
b

a2 − b2
. (3.8.5)

As stated in [2, p. 236], the complex potentials (3.8.1) and (3.8.2) produce zero tractions
on the inner and outer boundaries. Next, as in Section 3.4, we decompose the difference
displacement into the constituent parts

D = D† + D∗ (3.8.6)

and let

2µD† = (3 − 4ν(1))ϕ(z) − zϕ′(z) − ψ(z)

= Az[2(1 − 2ν(1)) log r + 4(1 − ν(1))iθ] + 2zAB(1 − 2ν(1))
(3.8.7)

−zA(3 − 4ν(1)) − 2ACzr−2, (3.8.8)

where r2 = zz. Consequently, the displacement D† contains the dislocation

[D†]C = iε(x1 + ix2). (3.8.9)

where the simple curve C encloses the origin. The total difference displacement D is supposed
single valued and so D∗ must be chosen to possess a discontinuity equal and opposite to
(3.8.7). Set

D∗ = − ε

2π
z log z + C1z, (3.8.10)

where C1 is a constant, and note by (3.6.1) that the associated thermoelastic problem possesses
the temperature given by

T + iS = 2[ (λ(1) + µ)

(3λ(1) + 2µ)κ
][− ε

2π
(log z + 1) + C1]. (3.8.11)
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The coefficients ε and C1 in (3.8.9) may be chosen to ensure that the temperature satisfies
prescribed values on the inner and outer boundaries.

Also by (3.6.1) the complex potential ϕ(2)(z) in the traction boundary problem with Poisson
ratio ν(2) is given by

ϕ(2)(z) = −[ µ

2(ν(1) − ν(2))
][− ε

2π
z log z + C1z], (3.8.12)

and the complex potential ϕ(1)(z) for Poisson’s ratio ν(1) follows immediately. Observe that a
term z log z necessarily is present in both complex potentials ϕ(1) and ϕ(2), so that, irrespec-
tive of the complex potentials ψ(1) and ψ(2), it may be concluded from (2.3.3) and (2.3.5)
that both displacements D(1) and D(2) are multi-valued. The complex potential ψ(2) may be
calculated from the prescribed boundary traction and enables the complex potential ψ(1) to be
determined.

It is apparent that there is no advantage in considering the difference solution when treating
wedge disclinations. Nevertheless, as noted by Muskhelishvili [2, p. 239], the solution with
a wedge disclination does provide that for the steady state thermal problem with prescribed
boundary temperatures and zero boundary tractions. The converse also holds.

4. Elastic inclusions

4.1. INTRODUCTION

This section seeks to demonstrate how the difference displacement and stress defined in
Section 3.2 may be employed to solve the problem of elastic inclusions bonded to a matrix
of different Poisson ratio but the same shear modulus. For this purpose, let the region �

be singly connected and either bounded or unbounded, and let it contain simply connected
internal regions that are separated from each other and do not intersect the external boundary
∂� of �. The interfacial contour between each internal region and its complement in � is
a simple closed non-intersecting curve. The internal regions, conveniently termed inclusions,
are each occupied by a different elastic material whose Poisson ratios differ from each other
and from that of the elastic material in the multiply connected region (the matrix) which is
the complement in � of the inclusions. The shear modulus, however, is the same in both
inclusions and matrix. The region � is in equilibrium under zero body force and standard
boundary conditions applied to the external boundary ∂�. When the region is unbounded
appropriate conditions are specified at infinity. Throughout the deformation, the inclusions
remain bonded to the matrix in the sense that across each interfacial contour there is conti-
nuity of displacement and traction. Furthermore, the solution is supposed regular such that
the complex potentials and derivatives are continuous onto each interfacial contour from both
the matrix and respective inclusion, and onto the external boundary from the matrix. The
displacement and stress are assumed single valued in both the inclusion and matrix.

4.2. THE SINGLE INCLUSION

For simplicity of presentation, attention is restricted to only one inclusion which is denoted
by �1 and its Poisson ratio by ν(1). The matrix is denoted by �2 and its Poisson ratio is
given by ν(2). The shear modulus, as before, is µ, and C is the interfacial contour separating
the inclusion and matrix. A similar procedure to the following may be applied to the general
problem. Other generalisations are indicated later.
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In the absence of the inclusion but with the boundary conditions unaltered, the problem
reduces to the standard boundary-value problem for an elastic material of Poisson ratio ν(2)

and shear modulus µ occupying �. The corresponding complex potentials, denoted by ϕ(2)

and ψ(2) to adhere to previously introduced notation, are holomorphic in the bounded region
�. When � is the whole plane these functions, to comply with behaviour at infinity, assume
the forms

ϕ(2)(z) = �z, z ∈ �, (4.2.1)

ψ(2)(z) = �∗z, z ∈ �, (4.2.2)

in which � and �∗ are complex constants determined by prescribed conditions at infinity [2,
p. 148]. As noted in Section 2.2, the complex potentials ϕ(2) and ψ(2), and consequently the
stress components σ

(2)
αβ , are independent of the elastic moduli in the traction boundary-value

problem.
When the inclusion is present, the complex potentials for both the inclusion and matrix

are denoted by ϕ(1) and ψ(1). The assumed single valuedness of the displacement and stress
everywhere in �1 and �2 implies that ϕ(1) and ψ(1) are holomorphic in �1 and �2 and
continuous onto C from �1 and �2. Continuity of ϕ(1) and ψ(1) across C, however, cannot
be assumed, and consequently ϕ(1) and ψ(1) are sectionally holomorphic in � with curve of
discontinuity C. Independence from the elastic moduli no longer holds even in the traction
boundary-value problem.

The difference complex potentials, which according to the previous definition are given by

ϕ(z) = ϕ(1)(z) − ϕ(2)(z), ψ(z) = ψ(1)(z) − ψ(2)(z), (4.2.3)

inherit from ϕ(1) and ψ(1) the property of being sectionally holomorphic in � with curve of dis-
continuity C. The determination of ϕ(z) and ψ(z) is sought in terms of the complex potentials
ϕ(2)(z) and ψ(2)(z), but before undertaking this task it is convenient to record expressions for
the corresponding difference displacement and stress components for the inclusion and matrix.
Let D(1) and D(2) be the displacement in � in the presence and absence of the inclusion and
let σ

(1)
αβ and σ

(2)
αβ be the corresponding stress components. Introduce the definitions

D = D(1) − D(2), (4.2.4)

and

σαβ = σ
(1)
αβ − σ

(2)
αβ , (4.2.5)

which in conjunction with (2.1.13)–(2.1.15) lead to the following expressions:

2µD = (3 − 4ν(1))ϕ(z) − zϕ′(z) − ψ(z) − 4(ν(1) − ν(2))ϕ(2)(z), z ∈ �1, (4.2.6)

= (3 − 4ν(2))ϕ(z) − zϕ′(z) − ψ(z), z ∈ �2, (4.2.7)

and

σαα = 2(ϕ′(z) + ϕ′(z)), z ∈ �1 ∪ �2 (4.2.8)

σ22 − σ11 + 2iσ12 = 2(zϕ′′(z) + ψ ′(z)), z ∈ �1 ∪ �2. (4.2.9)
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Note also that by (2.1.5) the difference dilatation eαα and rotation ω(= ω(1) − ω(2)) satisfy

µeαα + 2iµω = (3 − 4ν(1))ϕ′(z) − ϕ′(z) − 4(ν1) − ν(2))ϕ(2)
′
, z ∈ �1, (4.2.10)

= (3 − 4ν(2))ϕ′(z) − ϕ′(z), z ∈ �2. (4.2.11)

The determination of the complex potentials ϕ(z) and ψ(z) requires examination of their
limiting behaviour as the contour C is approached from �1 and �2. In the absence of the
inclusion, the displacement and traction are continuous across every simple curve in �, and
when the inclusion is present, by hypothesis, the same quantities are continuous also across
the contour C. Consequently, the difference displacement and traction are likewise continuous
across C, which from (4.2.6) for the displacement implies:

(3−4ν(1))ϕ+(s)−(3−4ν(2))ϕ−(s)=4(ν(1)−ν(2))ϕ(2)(s)+s[ϕ′+(s)−ϕ′−(s)]+ψ+(s)−ψ−(s)],
(4.2.12)

where a plus or negative subscript refers to quantities that approach their limiting behaviour
on C from �1 and �2, respectively, s is a (complex) point on C, and C is described anti-
clockwise. The difference traction across curves immediately adjacent to, but on either side
of, C are obtained from (2.1.20) and respectively become:

F1 + iF2 = −i
d

ds
[4(1 − ν(1))ϕ+(s) − 4(ν(1) − ν(2))ϕ

(2)
+ (s) − 2µD+], z ∈ �1, (4.2.13)

= −i
d

ds
[4(1 − ν(2))ϕ−(s) − 2µD−], z ∈ �2. (4.2.14)

Continuity of traction across the contour C consequently yields:

(1 − ν(1))ϕ+(s) − (1 − ν(2))ϕ−(s) = (ν(1) − ν(2))ϕ(2)(s), s ∈ C, (4.2.15)

on recalling the continuity of D. On the external boundary ∂� either the difference displace-
ment or traction vanish according to the prescription of the original boundary conditions. A
similar remark applies to behaviour at infinity when the region � is unbounded.

The integration of sectionally holomorphic functions satisfying (4.2.15) leads to the fol-
lowing expression for the complex potential ϕ(z) [2, p. 273, p. 444]:

ϕ(z) = (ν(1) − ν(2))

(1 − ν(1))
ϕ(2)(z) + ϕo(z)

(1 − ν(1))
, z ∈ �1, (4.2.16)

= ϕo(z)

(1 − ν(2))
, z ∈ �2, (4.2.17)

where ϕo(z) is a complex function holomorphic in �.
Substitution of (4.2.16) and (4.2.17) in (4.2.12) followed by a routine manipulation yields:

ψ+(s) − ψ−(s) = −h(s), s ∈ C, (4.2.18)

where

h(s) = (ν(1) − ν(2))

(1 − ν(1))

[
ϕ(2)(s) + sϕ(2)

′
(s) + ϕo(s) + sϕo ′(s))

(1 − ν(2)

]
, (4.2.19)
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which from the theory of sectionally holomorphic functions and the assumption ψ(0) = 0
leads after integration to:

ψ(z) = ψo(z), z ∈ �1, (4.2.20)

= − 1

2iπ

∮
C

h(s)

(s − z)
ds + ψo(z), z ∈ �2, (4.2.21)

where ψo(z) is a complex function holomorphic in �. The holomorphic functions ϕo(z) and
ψo(z) are determined from boundary conditions on ∂� which, as just stated, vanish iden-
tically. For example, in the traction boundary-value problem for the bounded region �, the
functions satisfy the condition:

ϕo(s) + sϕo ′
(s) + ψo(s) = 1

2iπ

∮
∂�

h(t)

(s − t)
dt, (4.2.22)

which may be solved by standard techniques, first for the combination ϕo(z) + zϕo′
(z), and

then for ϕo(z) and ψo(z). Details are omitted. Of course, when � occupies the whole space,
and under the previously stated conditions, the holomorphic functions ϕo(z) and ψo(z) vanish
identically by Liouville’s theorem.

Accordingly, assume that the functions ϕo(z) and ψo(z) are known at all points of �.
The complex potentials ϕ(1) and ψ(1) are obtained straightforwardly from (4.2.3), (4.2.16),
(4.2.17), (4.2.20) and (4.2.21) and are given by:

ϕ(1)(z) = (1 − ν(2))

(1 − ν(1))
ϕ(2)(z) + ϕo(z)

(1 − ν(1))
, z ∈ �1, (4.2.23)

= ϕ(2)(z) + ϕo(z)

(1 − ν(2))
, z ∈ �2, (4.2.24)

and

ψ(1)(z) = ψ(2)(z) + ψo(z), z ∈ �1, (4.2.25)

= − 1

2π i

∮
C

h(s)

(s − z)
ds + ψ(2)(z) + ψo(z), z ∈ �2. (4.2.26)

The displacement and stress components when the inclusion is present follow by applica-
tion of (2.1.13)–(2.1.15) to the complex potentials ϕ(1) and ψ(1)(z). Consequently, under the
stated conditions, the inclusion problem is completely solved in terms solely of the complex
potentials ϕ(2)(z), ϕo(z) and ψo(z). Note that the method of solution is independent of the size
and shape of the inclusion, the geometry of �, and of the boundary conditions on the external
boundary (or at infinity). The method may be extended to several bonded inclusions whose
Poisson ratios differ from each other and from that of the matrix.

Expressions are next sought for the dilatation and rotation at points in �1 and �2 , and it
is convenient to consider only unbounded regions � for which, as noted earlier, the complex
potentials ϕo(z) and ψo(z) are identically zero. Substitution from (4.2.16), (4.2.17) in (4.2.10)
and (4.2.11) yields

µeαα + 2iµω = −(ν(1) − ν(2))

(1 − ν(1))
(ϕ(2)

′
(z) + ϕ(2)

′
(z)), z ∈ �1, (4.2.27)
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= 0, z ∈ �2, (4.2.28)

from which it follows that the inclusion does not alter the rotation anywhere in � nor the
dilatation except in the region of the inclusion itself. To determine the dilatation inside the
inclusion, note first from (2.1.11) and (2.1.14) that

2(λ(2) + µ)e(2)
αα = σ (2)

αα = 2(ϕ(2)i (z) + ϕ(2)
′
(z)), (4.2.29)

which, on combining with (4.2.27) and (4.2.28), leads to

eαα = − (ν(1) − ν(2))

(1 − ν(1))(1 − 2ν(2))
e(2)
αα , (x1, x2) ∈ �1, (4.2.30)

so that the final dilatation at points inside the inclusion is expressed by

e(1)
αα = eαα + e(2)

αα = (λ(2) + 2µ)

(λ(1) + 2µ)
e(2)
αα , (x1, x2) ∈ �1. (4.2.31)

It follows that the expansion of the region occupied by the inclusion is given by∫
�1

e(1)
ααdx1dx2 = (λ(2) + 2µ)

(λ(1) + 2µ)

∫
�1

e(2)
ααdx1dx2. (4.2.32)

4.3. DISCUSSION

The three-dimensional formula analogous to (4.2.32) has been derived in [26, 27] by an
argument similar to that described here. The discussion in [27] permits both elastic moduli
to be simultaneously varied and besides the derivation of the exact solution also presents
expressions for the mean values of the strains. The technique is readily adapted to the two-
dimensional problem and is not repeated here. Other treatments of the three-dimensional
inclusion problem permitting variation in both moduli are, for example, due to Eshelby [6],
Kupradze [28] and Hill [29]. The last author is concerned with establishing bounds and rela-
tions for the moduli important in the theory of elastic composites, and which of course apply
equally to problems in plane elasticity.

Eshelby’s approach is to interpret the problem as the insertion of an inclusion into a mis-
fitting cavity contained in the matrix. It is instructive to sketch the argument in the present
context as it leads also to a possible relation with dislocations. A homogeneous region �1 of
Poisson ratio ν(1) and shear modulus µ is to be inserted into a cavity in the unstressed matrix
�2 of Poisson ratio ν(2) and the same shear modulus. The amount of displacement that must be
applied to each surface point of �1 to ensure that it perfectly fits into the cavity is D∗ given by
(3.4.2). Once inserted, the region �1 is bonded to the matrix and becomes the inclusion, while
the mechanism for applying the surface displacement D∗ is relaxed creating the additional
displacement D† = D − D∗ and the associated stress σαβ . Because by construction the final
displacement D is continuous across the interface C between the inclusion and matrix, there
is a discontinuity in the displacement D† of amount −D∗ which is identified by Dundurs
[14] as a Somigliana dislocation (see also Eshelby [30] and Maiti [25]). The two-dimensional
problem posed in this manner was first solved by Sherman [31] (see also [2, p. 442]) by
a different method. An alternative treatment using the so-called Betti-Somigliana integral is
provided by Maiti and Makan [32], while a power series expansion solution is presented by
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Buchwald and Davies [33]. A recent direct treatment of a slightly more general problem is by
Shen et al. [34]; see also Ru [35].

The inclusion problem may also be interpreted to yield a relationship with the thermoelastic
problem of a region �1, heated to a steady temperature T given by (3.5.2), and bonded to the
matrix �2 maintained at zero temperature and subject to zero boundary conditions on the outer
boundary ∂�. The corresponding thermal displacement and stresses are then the difference
displacement and stresses (4.2.6), (4.2.7), (4.2.8) and (4.2.9). The reverse is also possible.

The temperature distribution in the inclusion determines the real part of the function ϕ(2)
′
(z)

from which the imaginary part may be calculated in the standard way. Thereafter, analytic

continuation enables the function ϕ(2)
′
(z) to be determined in �2. The holomorphic function

ψ(2)(z) then may be found upon prescribing the boundary conditions on the external boundary
∂� and consequently the displacement D(2) and the stress components σ

(2)
αβ are known. The

final displacement D(1) and stress components σ
(1)
αβ are found from (4.2.4) and (4.2.5).

4.4. EXAMPLE

We conclude this section with the simple example of a circular inclusion of radius a contained
in an infinite matrix subject to uniform pressure p at infinity. (cp., [2, p. 220]). The complex
potentials in the absence of the inclusion are given by

ϕ(2)(z) = 1

4
pz, ψ(2)(z) = −1

2
pz, z ∈ �. (4.4.1)

By (4.2.23)–(4.2.26), the final complex potentials become

ϕ(1)(z) = pz(1 − ν(2))

4(1 − ν(1))
, ψ(1)(z) = −1

2
pz, z ∈ �1 , (4.4.2)

ϕ(1)(z) = 1

4
pz, ψ(1)(z) = −p[z + a2(ν(1) − ν(2))]

z(1 − ν(1))
, z ∈ �2, (4.4.3)

and the displacement and stress may be calculated as before.

5. Conclusion

It is beyond the present scope to provide a comprehensive treatment of all problems in the cate-
gory under consideration. The intention instead has been to indicate a possible unified strategy
for the plane problem and, incidentally, to use the results to complement and contrast those
for corresponding three-dimensional problems. Such comparison also suggests further studies.
In the plane theory, for example, the relationships developed might usefully be exploited as
an alternative method of investigating the force on a defect and subsequent connexion with
the energy momentum tensor. The solution to the problem of a continuous distribution of
dislocations might also be amenable to the present approach. It appears unlikely, however, that
problems with a space-dependent Poisson ratio can be accommodated, although the additional
variation of a uniform shear modulus can be included in the analysis. In the previous notation
the difference displacement (3.2.3) becomes
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2µ(1)D =(3−4ν(1))ϕ(z)−zϕ
′
(z)−ψ(z)−

[
4(ν(1)−ν(2))+ (µ(1)−µ(2))(3−4ν(2))

µ(2)

]
ϕ(2)(z)

+
[
(µ(1) − µ(2))

µ(2)

]
[zϕ(2)

′
(z) + ψ(2)(z)],

with appropriate modification for the difference stresses. A similar analysis to that described
here is applicable and will be presented elsewhere.

A further relationship may be developed with the notion of internal stress. Details are
omitted because the connexion between thermoelasticity, dislocations and internal stress is
adequately treated in standard texts (e.g., [4, p. 425]) and can be incorporated easily into the
present analysis. Note also that experimental tests for dislocations are described in the books
by Nabarro [12] and Mura [36].

Finally, it is worth remarking that the scope of possible applications can be enlarged by
combining the present procedure with, for example, the analogy between elastic plane strain
and transverse flexure of a thin plate (Mindlin [37]), or with the thermoelastic similarity laws
discussed by Green, Radok and Rivlin [38].
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